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During motion over a fluid surface of a pressure localization region with a nearly 
critical velocity (the Froude number is close to unity in depth) one may observe an interest- 
ing phenomenon: along with the generation of the wake of the wave the perturbation source 
(the moving pressure region) generates periodically a soliton-shape wave, escaping from it 
above the flow, and emerging from the regime of motion with constant (supercritical) velocity 
without changing its shape. 

The effect described of soliton generation, initially observed experimentally, was sub- 
sequently verified by numerical calculations. This was first done in [i], where the Boussi- 
nesq approximation was used, generalized to the case of presence of a surface pressure. The 
model includes both nonlinear and dispersion effects (in whose interaction is also shaped the 
mechanism of the given effect), making it possible to obtain an adequate qualitative pattern 
of the process. However, due to the approximate nature of the model, constructed under the 
assumption of smallness of dispersion and nonlinearity, the problem arises of validity of the 
quantitative results. Another approximate model, applicable to the study of soliton genera- 
tion and induced by the Korteweg-de Vries equation [2] is even less general, since it is a 
further approximation of the Boussinesq approximation to the case in which the perturbation 
source moves with a velocity near the critical velocity. Some idea about the extent of veri- 
fiability of the approximate modeling of the given process can be obtained from [3], where 
calculation results of both models were compared, and comparison with experiment was also 
carried out for generation of solitons moving over a rough bottom. 

In the present paper the effect of soliton generation is considered within a more gen- 
eral model of potential flow of an ideal incompressible fluid, free of the restrictions on 
amplitude and length of the waves investigated. The dependence of the basic process charac- 
teristics on surface pressure intensity is analyzed numerically. In that case, along with 
the potential model we investigate a generalized Boussinesq model, with the purpose of esti- 
mating the validity limits of the latter. 

i. It is assumed that at some moment of time the region occupied by the fluid is a 
curvilinear quadrilateral Q(t) = {0 S x ~ s -h S y ~ D(x, t)} in a Cartesian coordinate sys- 
tem Oxy with axes x and y directed along the surface level of the unperturbed fluid and ver- 
tically above, respectively. The fluid motion occurs under the action of an external force - 
an assigned surface pressure distribution p(x, t). Consider the case in which the pressure 
is concentrated on a bounded support, and varies with time as a whole: 

I p,~l (~) for: I ~ I ~ I, 
P t) Po(~) 

l'io f,~,: I~1>  1, 
(i.l) 

where $ = x - X(t) is the local coordinate, x = X(t) is the given law of motian of the mean 
point $ = 0 of the pressure region, Pm = const, and max f(~) = I. Here and in what follows 
we use only dimensionless variables, and the scales of all quantities are selected in such 
a manner that the semilength of the surface pressure, the free fall acceleration, and the 
fluid density are equal to unity. 
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To describe the fluid motion we use the potential flow model of an ideal fluid and the 
generalized Boussinesq approximation. In this and other models the corresponding system 
contains two equations of evolutionary type, one of which describing the time variation of 
the shape of the fluid surface q(x, t), and the other necessary for determining the evolu- 
tion of the velocity field. Formally they can be written down in general form for both mod- 
els 

~lt H- v = O; ( 1 . 2 )  

q, q- s~ = 0 (1.3) 

with functions v(x, t), q(x, t), s(x, t). The equations written are supplemented by initial 
value 

~l--=q0(x), q = qo(x) for  t = 0 (1.4) 

and additional relations between q, v, q, s, closing the system. 

Within the potential model these relations are 

q = u; (1.5) 

s = ,---~ I T  tu" - -  v-) i -  ll~UV] + I1 + P 
t-r% (1.6) 

Here u(x, t) and v(x, t) are the tangential and normal components (accurately within a nor- 
malization factor) of the velocity vector of fluid particles, found at the surface y = ~(x, 
t). According to [4], v is determined as a result of action of the normal derivative oper- 
ator N on the boundary value potential ~ = ~ (x, t): v =N~, where 

x 

q'(x, t )=  To(t) + ~u(~, t)d~ ( 1 . 7 )  
0 

with an  arbitrary function %(t). The action of the nonlocal operator N(q) is defined as 

~)~'q) ~- ]]x(Px -- (~)y for Y = ] | (X ,  t ) .  (1.8) 

Here r y, t) is the solution of the elliptic problem 

r 1 6 2  q ) , ~ = O f o r  x = O ,  x = l ,  

(I),j : 0 f o r  y == --]~, (I) --~ ~ f o r  y ~ ~](x,  t) .  

The required function q(x, t) determines one of the boundary regions Q(t), generating 
several difficulties in solving the elliptic problem. The variable replacement (x, y, t) + 
(x, z, t) (z = (q - Y)/(D + h)) is used to overcome them. The flow region Q(t) of this re- 
placement is transformed to the constant quadrilateral H = {0 ! x ~ s 0 5 z ! I}. In the 
new variables the elliptic problem acquires the form 

U x  A_ Vz = 0 i n  tq; ( 1 . 9 )  

U ----~- 0 f o r  X =  O, X--~ ~; 

V = 0 f o r  Z ~ t ;  

( i .  I 0 )  

(1 .11)  

O-- (p for z----O. (1.12) 
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The following notations were used here: 

U(x, z, t) = a O x d -  ~0~, V(x, z, t) = ~Ox + ?Oz;  ( 1 . 1 3 )  

~(x, t) = n'-l- h, ~(x, z, t) = (l - -  z)n~, ?(x, z, t) = (1 + ~2)/a. (i.14) 

In completing the statement of the problem within the potential model, relation (11.8) is re- 
written: 

V = ~ for z = O. (1.15) 

In the generalized Boussinesq model the system of equations (1.2)-(1.4) is closed sub- 
stantially more simply [i]: 

q = z v -  ( l /3 )h 'w~;  

R,' : 0 for a2 = 0, X = I; 

s = (1 /2)w2+ n + p, v = [(~ + h)w]~ 

( 1 . 1 6 )  

( 1 . 1 7 )  

( 1 . i 8 )  

[w(x, t) is the horizontal velocity component averaged over depth]. The relative simplicity 
of the generalized Boussinesq approximation [the systems of equations (1.2)-(1.4), (1.16)- 
(1.18)] in comparison with the potential model [the system (1.2)-(1.7), (1.9)-(1.15)] is 
achieved due to the restrictions on the amplitude a and length I of the investigated waves 
El]: 

5 ~ = a / h < < i ,  5 ~ = h / ) ~ < < L  ( ~ = 0 ( 5 ~ ) .  ( 1 . 1 9 )  

2. The numerical solution algorithm of the problem, both within the potential model 
and within the Boussinesq approximation, is constructed by the finite difference method. 
The evolutionary equations are approximated by the Crank-Nicholson scheme with second order 
in t: 

(x is the step in time, the first superscript is the step number in time, and the second is 
the iteration number). The iteration process at each step in t is necessary due to the im- 
plicitness of the scheme and the nonlinearity of the supplementary relations in D, v, q, s. 

In the potential model, in parallel with the iteration of nonlinear terms a recon- 
struction is realized of the solution of the elliptic problem by the scheme of stabilizing 
corrections (the first subscript is omitted): 

( i ) h  + 1 / 2  . r r h + l / 2  (i)/,. 
-- wu~ = + r 

Uh+I/~ (r = ,  .~ + [~k+qeh)/~,h+l; 

U k+l/2 = 0 fo r  x = O, x = l; 

(~+i -- s = ~9h+1/2 -- (0V~; 

(7/7) ~+I : qO TM for Z ---- O, V h+I = Oi for z = l 

(0J is an iteration parameter). 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

The derivatives with respect to spatial variables are approximated in both models by 
second order, while for this purpose one uses only symmetric differences, which is possible 
due to the appearance of spaced lattice sites for the various functions. At the points 
xi-I/2, where x~ = vh I (h I = s I is the grid step in the variable x, and m I is an integer) 
are located the nodes Di-i/2 = n(xi-i/2, t), vi_i/2, si_i/2 (i = 1 .... , ml), and between 

these points are the nodes qi (i = I, ..., m I - i). Also at the points xi, but including 
also the ends of the segment [0, s are located the nodes u i or w i (i = 0, ..., ml). 
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Within the potential model the elliptic problem (2.1)-(2.6) is calculated on a grid 

consisting of the nodes r = ~(xi-I/2, zj-1, t) (i = i, .... ml, j = 1 .... , m2) , 

Ui,j- I (i = 0 .... , m I, j = 1, ..., m2), Vi,i/2,j-i/2 (i = i, .... ml, j = 0 .... , m2) , 

where z v = vh 2 (h 2 = i/(m 2 - 0.5) is the step over the coordinate z, and m 2 is an integer). 
Following the replacement of derivatives by corresponding similar differences, the solution 
of the system of equations (2.1)-(2.6) reduces to inversion of a sequence of tridiagonal 
matrices. A more detailed description of the computational algorithm of the elliptic prob- 
lem can be found in [5]. 

Within the Boussinesq approximation the elliptic part of the problem, represented by 
Eq. (1.16) with boundary conditions (1.17), is quite simple, and its finite-difference re- 
alization is obvious. 

3. In the calculations we used the following parameter values, determining the flow 
geometry: channel length s = 75, and width h = i. The pressure is distributed over its 
carrier according to (i.i) with the function f($) = (1/2)(1 + cos mS). The maximum pressure 
value Pm was varied. The law of motion of source perturbation was given in the form 

(X o for: t ~ 0,: 
X (t) 

X 0 @ Ct for t>0 (3.1) 

with starting point x0 = 2 and constant velocity c = i, which is critical in selecting the 
channel width: Fr = c/r -= i. Until the initial moment of motion of the pressure region the 

fluid is at rest, i.e., D0(x) = -p0(x - x0), q0(x) ~ 0. 

The calculation results by the potential model in the case Pm = 0.2 with grid parameters 
m I = 375, m 2 = i0, T/hz = 0.5 are presented in Figs. 1 and 2. Figure 1 shows the wave pro- 
file evolution. The lower curve is the shape of the fluid surface at t = 0, and further 
above are the profiles through equal time segments At = i0 until the final computing time t = 
60. At each curve the two vertical primes denote the portion of the surface at which the 
pressure is nonvanishing at the given moment of time. Figure 1 demonstrates smoothly the 
formation process of solitons, traveling ahead from the perturbation source in the direction 
of its motion (above the flow, in a reference system attached to the pressure region). Two 
such solitons manage to get formed by the moment t = 60, the first of which (the top curve) 
is already found in a phase of collapse at the right wall. The fluid discharge at soliton 
formation is compensated by formation of a longitudinal cavity at the surface behind the 
perturbation source. 

The evolution of the solitons generated with time can be followed from Fig. 2, where 
the variations in their amplitudes and velocities are shown. Curve 1 is the amplitude a~(t) 
of the first soliton, more accurately, the vertical coordinate of the local maximum of the 
fluid surface ahead of the perturbation source, and 2 is the velocity of motion v1(t) of 
this maximum, i.e., the time derivative of its horizontal coordinate. At some moment of 
time and in front of the pressure region is generated a certain local maximum, the variations 
of whose amplitude a2(t) and velocity v2(t) are shown by curves 3 and 4, respectively. The 
dashed line in Fig. 2 shows the wave resistance r(t) [i]: 
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r (t) = ~ pqx dx. 
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The separation of the i - t h  ( i  = i ,  2 . . . . .  ) so l i ton  from the perturbat ion source is mani- 
fested in the nonmonotonic behavior of the corresponding curve ai(t) , the sharp increase in 
vi(t) , and achievement of an alternate local maximum of the function r(t). The maximum 
points of r(t) are naturally assumed to be the soliton separation moments. As seen from 
Fig. 2, each separated soliton moves ahead with almost constant velocity, while its ampli- 
tude continues increasing (with a reduced pace). 

The dependence of the fundamental characteristics of the process investigated (the 
soliton generation frequencies, their amplitudes and wave resistance) on the intensity of 
external action on the fluid is of interest. In the given case the distribution f($) and 
the velocity of motion of the pressure region c are assumed fixed, so that the parameter Pm 
serves as a measure of intensity. According to investigation results in approximate models 
[2, 3], with increasing Pm one must expect an increase in the soliton generation frequencies, 
as well as their amplitudes and velocities, which is verified by the data of the present 
calculations. In that case only a quite narrow range of Pm variation (approximately from 
0.i to 0.2) is suitable for effective numerical investigation of the process, in the sense 
that assigning Pm from this interval guarantees an acceptable frequency of soliton genera- 
tion (i.e., a quite fast evolution process) and moderate values of the amplitudes of soli- 
tons and waves generated in the medium, not leading to development of instabilities. 

The dependences of the fundamental process characteristics on the pressure intensity 
Pm, varied within the limits mentioned~ are shown in Figs. 3 and 4, allowing, besides, to 
trace the dynamics of divergence of calculation results according to the Boussinesq approx- 
imation with potential model results with increasing Pm, i.e,, with enhanced process non- 
linearity [increasing parameters 61, 62 of (1.19)]. Figure 3 provides the wave resistance 
r(t), calculated for Pm = 0.2(a) and 0.1(b). The solid, primed, and dotted lines 1 corre- 
spond to calculations by the potential flow model of an ideal fluid, and the similar lines 
2 correspond to the generalized Boussinesq approximation. The basic variant of the calcula- 
tion with a grid step along the horizontal coordinate h I = 0.2 is shown by solid curves, 
while the solid and dotted curves are the calculation results with hl = 0.4 and hl = 0.i, 
respectively. For variation of the grid step along the horizontal coordinate the ratio 
�9 /hl = 0.5 and the step value h 2 = 2/19 along z have remained unchanged. 

The frequency values calculated by the potential model for the occurrence of the first 
soliton ml = 2~/ti, its amplitude a11 = a1(tl), and the wave resistance rl = r(tl) at the 
moment of time t~ are shown as a function of Pm in Fig. 4 by the points 1-3, respectively, 
while the points 4-6 are the values of the same parameters, found as a result of a calcula- 
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tion by the generalized Boussinesq approximation. It can be seen that for Pm = 0.2 the 
approximate model, compared to the more accurate potential model, reduces substantially 
the soliton generation frequency (by 25%), their amplitudes at the moment of separation (by 
35%), and the maximum value of the wave resistance (by 43%). With decreasing Pm the devi- 
ations between the data obtained within the models considered decrease, and for Pm = 0.i 
the relative errors in the quantities listed above are ii, 16, and 28%. By an uncompli- 
cated extrapolation over the results shown in Fig. 4 one can obtain the upper limit Pm* of 
the interval of variation in Pm, by which using the generalized Boussinesq approximation 
leads to errors not exceeding 10% (relative to calculation results by the potential model), 
in all process parameters considered here: Pm* = 0.04. 

4. As a measure of controlling the calculation accuracy we provide a verification of 
the process of fluid mass conservation; more precisely, we followed the variation in time 
of the integral 

Z 

AM (t) = ~ (~ (x, t) - ~o (x)) dx. 
0 

At the end moment of the calculation t = 60 (600 steps in time) the mass defect AM(t) 
reached 8.3"10 -5 for Pm = 0.I and 6.5"i0 -s for Pm = 0.2. For the Boussinesq approximation 
these numbers are substantially better: 1.4.10 -9 and 3.4"10 -9 , respectively, but even the 
value 8.3"10 -5 must be considered fully satisfactory, taking into account that the whole 
fluid mass in the channel is approximately hs = 75. The fluid mass conservation in poten- 
tial model calculations can be improved by increasing the number of iterations at each step 
in t, i.e., due to increasing cost in computer time for the indicated values of mass defect 
this cost is also high due to the two-dimensionality of the elliptic part of the problem, 
substantially exceeding (by 50 times for Pm = 0.i and by almost i00 times for Pm = 0.2) the 
similar cost when using the generalized Boussinesq approximation. 

With the purpose of analyzing the sensitivity of the numerical experiment results to 
variation of the grid parameters we carried out control calculations with step variations 
along the horizontal coordinate h I = {0.4, 0.2, 0.i} and in time (while retaining the ratio 
�9 /h I = 0.5). The step in the z coordinate in the potential model remained unchanged (h 2 = 
2/19). From Fig. 3 one can trace the effect of grid parameter variation on the behavior of 
the wave resistance. On the whole the reduction in computational grid provides a qualita- 
tive effect, similar to the effect of increasing Pm, i.e., an enhancement of nonlinearity - 
an increase in the soliton generation frequencies and in their amplitudes. This effect is 
natural, since it reflects the reduction in computational discrepancy with decreasing grid 
step. As to the magnitude of this effect, i.e., the relative variations in the various 
flow characteristics during transition from one grid to another, then in the potential mod- 
el, as compared with the Boussinesq approximation, these vriations seem, firstly, more no- 
ticeable in the whole interval 0.i S Pm S 0.2, and, secondly, they depend substantially on 
Pm" Thus, for Pm = 0.i the deviation between the potential and approximate models in the 
first soliton amplitude at its moment of separation were 14, 16, and 17% at grids with hl = 
0.4, 0.2, and 0.i, respectively, and for Pm = 0.2- 21, 35, and 44%. Thus, with increasing 
Pm an accurate numerical investigation of the process becomes quite difficult, not only due 
to the impossibility of validating the approximate, weakly nonlinear models, but also due 
to the necessity of using quite small computational grids in numerical solution of equations, 
accurately accounting for the nonlinearity. 

The author is grateful to I. V. Sturov for stating the problem and for his interest in 
this study. 
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SURFACING OF A HEAVY SPHERE IN VIBRATING SAND 

B. V. Levin UDC 531.131 

This article reports the results of an experimental study of the motion of a sphere 
in a vibrating free-flowing medium. Analysis of the results made it possible to establish 
that the mean upward velocity of the sphere is linearly dependent on its diameter. 

The effects of the motion of a uniform, free-flowing vibrating medium in an oscillating 
field of accelerations comparable to (vibro-fluidization regime) or greater than (vibro- 
boiling regime) gravitational acceleration with regard to amplitude have been studied in 
fairly great detail and are being put to use in industry [i]. Several experimental [2] and 
theoretical [3] studies have examined the surfacing of heavy bodies and immersion of light 
bodies in a vibrating liquid. Numerical methods were used in conjunction with a two-dimen- 
sional model in [4] to study the laws governing the vibrational separation (segregation) of 
a uniform mixture of particles of two very different diameters. As far as we know, there 
have not been any experimental studies of the vertical motion of a single sphere in a hori- 
zontal layer of a vibrating free-flowing medium. However, this problem is of interest both 
for technical applications and for geophysics, in connection with the need to investigate 
the anomalous "surfacing" effects noted in the literature in earthquakes involving the move- 
ment of large masses of soil and boulders under fine-grained sedimentary rock [5]. 

The experiments were conducted on a vibration unit which provided for motion of the 
free-flowing medium in a variable gravitational field created by vertical oscillations of 
the vibrator. The unit was a cylindrical container 50 cm in diameter and 20 cm high. In- 
stalled in the bottom part of the container was a plane coaxial vibrator 20 cm in diameter 
(Fig. i). The vibrator ensured vibration of a layer of dry sand up to 15 cm thick with 
accelerations up to 25 m/sec 2 and a constant vibration amplitude of 0.I cm. The frequency 
of vibration ranged from I to 25 Hz. The test sphere was placed at the bottom of the sand 
layer. After the vibrator was turned on and had operated for a certain period of time at 
a certain frequency, the sphere ended up on the surface of the sand. The thickness of the 
sand layer was changed with the range from 4 to i0 cm and was measured in each test both 
before the vibrator was turned on and after the sphere had risen to the surface. We used 
spheres ranging in diameter D from 4 to 45 mm. They were made of wood, cork, clay, paraffin, 
glass, polystyrene, iron, aluminum, and lead. 

In the main test series, we recorded the average velocity of the sphere V as the ratio 
of the thickness of the sand layer to the average time of movement of the sphere from the 
bottom to the surface measured with a stopwatch. We also studied the law of motion of the 
sphere with the use of a system (Fig. i) which included a thin inextensible filament, a 
lightweight dial gauge, and an extensible elastic filament (to raise the pointer). The use 
of a system with an elastic filament made it possible to determine the minimum frequency at 
which the sphere begins to rise and to fix the moment of the beginning of motion and the 
change in velocity over the initial section of the sphere's path. More than 200 tests were 
conducted with spheres of different diameters. The error of the determination of velocity 
in a given measurement was no greater than 5%. The slightly tensioned rubber filament did 
not significantly distort the measurement results. 

The completed tests allowed us to find the threshold frequency at which the sphere sur- 
faces. This value was found to be fmin = 20 Hz. The tests also made it possible to fix 
the initial velocity of the sphere (Vmi n = 0.I mm/sec) and to study the character of the 
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